Earthwork

R317100-10 Tunnel Excavation

Bored tunnel excavation is common in rock for diameters from 4 feet for sewer and utilities, to 60 feet for vehicles. Production varies from a few linear feet per day to over 200 linear feet per day. In the smaller diameters, the productivity is limited by the restricted area for mucking or the removal of excavated material.

Most of the tunnels in rock today are excavated by boring machines called moles. Preparation for starting the excavation or setting up the mole is very costly. Shafts must be excavated to the invert of the proposed tunnel and the mole must be lowered into the shaft. If excavating a portal tunnel, that is starting at an open face, the cost is reduced considerably both for mobilization and mucking.

In soft ground and mixed material, special bucket excavators and rotary excavators are used inside a shield. Tunnel liners must follow directly behind the shield to support the earth and prevent cave-ins.

Traditional muck haulage operations are performed by rail with locomotives and muck cars. Sometimes conveyors are more economical and require less ventilation of the tunnel.

Ventilation and air compression are other important cost factors to consider in tunnel excavation. Continuous ventilation ducts are sometimes fabricated at the tunnel site.

Tunnel linings are steel, cast in place reinforced concrete, shotcrete, or a combination of these. When required, contact grouting is performed by pumping grout between the lining and the excavation. Intermittent holes are drilled into the lining and separate costs are determined for drilling per hole, grout pump connecting per hole, and grout per cubic foot.

Consolidation grouting and roof bolts may also be required where the excavation is unstable or faulting occurs.

Tunnel boring is usually done 24 hours per day. A typical crew for rock boring is:

Tunneling Crew based on three 8 hour shifts

- 1 Shifter
- 1 Walker
- 1 Machine Operator for mole
- 1 Oiler
- 1 Mechanic
- 3 Locomotives with operators
- 6 Miners for rails, vent ducts, and roof bolts
- 1 Electrician
- 2 Pumps
- 1 Laborer for hoisting
- 1 Hoist operator for muck removal
- 1 Oiler

Surface Crew Based on normal 8 hour shift

- 2 Shop Mechanics
- 1 Electrician
- 1 Shifter
- 2 Laborers
- 1 Operator with 18 ton cherry picker
- 1 Operator with front end loader

Exterior Improvements

R3201 Flexible Paving Surface Treatment

R320113-70 Pavement Maintenance

Routine pavement maintenance should be performed to keep a paved surface from deteriorating under the normal forces of nature and traffic.

The most important maintenance function is the early detection and repair of minor pavement defects. Cracks and other surface breaks can develop into serious defects if not repaired in their earliest stages. For these reasons a pavement preventive maintenance program should include frequent close inspections of pavement surfaces. When suspicious areas are detected, a detailed investigation should be undertaken to determine the appropriate repair. Where subsurface or pavement deterioration is detected, the Benkelman Beam can be used to make deflection measurements under normal traffic stresses. This is done to determine the extent of the affected area.

Patching or resurfacing work should be done during warm (10°C and above) and dry weather. Adequate compaction is difficult to achieve when hot or warm mixtures are placed on cold pavements. Asphalt and asphalt mixtures usually do not bond well to damp surfaces.

R3292 Turf & Grasses

R329219-50 Seeding

The type of grass is determined by light, shade and moisture content of soil plus intended use. Fertilizer should be disked 4" before seeding. For steep slopes disk five tons of mulch and lay two tons of hay or straw on surface per acre after seeding. Surface mulch can be staked, lightly disked or tar emulsion sprayed. Material for mulch can be wood chips, peat moss, partially rotted hay or straw, wood fibers and sprayed emulsions. Hemp seed blankets with fertilizer are also available. For spring seeding, watering is necessary. Late fall seeding may have to be reseeded in the spring. Hydraulic seeding, power mulching, and aerial seeding can be used on large areas.